If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-5x=120
We move all terms to the left:
15x^2-5x-(120)=0
a = 15; b = -5; c = -120;
Δ = b2-4ac
Δ = -52-4·15·(-120)
Δ = 7225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7225}=85$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-85}{2*15}=\frac{-80}{30} =-2+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+85}{2*15}=\frac{90}{30} =3 $
| 15x^2-(3x-1)=120 | | (3x+21)°+(10x-36)°=180 | | 21+4.5v=11-0.5v | | -3(3x+10)-(10+2x)=-7 | | 4n+2=3(n-6)+8 | | n=18+1/2 | | 6^1-2x=7^x | | 3n+2.5-2=56 | | 5x+3-4×-8=-2+4 | | 5z+7=2z+6 | | 3x+12+31=1 | | 8x+12=-21+5x | | -3(4p+2)-2(6-14p)=3(8+5p) | | -2(2c-16)=0 | | 9x=12-39 | | -7+3z=-10 | | -6(1+x)=-36 | | 5(x+1)-(3x+5)=-4 | | C=4x+25 | | -6+8=m-5 | | 4(a-1)=8 | | 5(2x+1)=3(x+4)-5x= | | 1-2h=18-19h | | -10x+17x=37 | | 12+3v= | | 6x+6-12=5x-3 | | 3y-(4y-y)=8 | | 2p^2-7p+9=0 | | 2p^2+14=5+7p | | (5-3x)=0.875-0.25x | | -9/6e=-24 | | (5y+5)-(3+4y)=11 |